Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742449

RESUMEN

Ultrahigh resolution mass spectrometry hyphenated with liquid chromatography (LC) is an emerging tool to explore the isomeric composition of dissolved organic matter (DOM). However, matrix effects limit the potential for semi-quantitative comparison of DOM molecule abundances across samples. We introduce a post-column infused internal standard (PCI-IS) for reversed-phase LC-FT-ICR MS measurements of DOM and systematically evaluate matrix effects, detector linearity and the precision of mass peak intensities. Matrix effects for model compounds spiked into freshwater DOM samples ranging from a headwater stream to a major river were reduced by 5-10% for PCI-IS corrected mass peak intensities as compared to raw (i.e., untransformed) intensities. A linear regression of PCI-IS corrected DOM mass peak intensities across a typical DOM concentration range (2-15 mg dissolved organic carbon L-1) in original, non-extracted freshwater samples demonstrates excellent linearity of the detector response (r2 > 0.9 for 98% of detected molecular formulas across retention times). Importantly, PCI-IS could compensate for 80% of matrix effects across an environmental gradient of DOM composition from groundwater to surface water. This enabled studying the ionization efficiency of DOM isomers and linking the observed differences to the biogeochemical sources. With PCI-IS original, non-extracted DOM samples can be analysed by LC-FT-ICR MS without carbon load adjustment, and mass peak intensities can be reliably used to semi-quantitatively compare isomer abundances between compositionally similar DOM samples.

2.
Environ Sci Technol ; 58(10): 4637-4647, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427796

RESUMEN

Marine dissolved organic matter (DOM) is an important component of the global carbon cycle, yet its intricate composition and the sea salt matrix pose major challenges for chemical analysis. We introduce a direct injection, reversed-phase liquid chromatography ultrahigh resolution mass spectrometry approach to analyze marine DOM without the need for solid-phase extraction. Effective separation of salt and DOM is achieved with a large chromatographic column and an extended isocratic aqueous step. Postcolumn dilution of the sample flow with buffer-free solvents and implementing a counter gradient reduced salt buildup in the ion source and resulted in excellent repeatability. With this method, over 5,500 unique molecular formulas were detected from just 5.5 nmol carbon in 100 µL of filtered Arctic Ocean seawater. We observed a highly linear detector response for variable sample carbon concentrations and a high robustness against the salt matrix. Compared to solid-phase extracted DOM, our direct injection method demonstrated superior sensitivity for heteroatom-containing DOM. The direct analysis of seawater offers fast and simple sample preparation and avoids fractionation introduced by extraction. The method facilitates studies in environments, where only minimal sample volume is available e.g. in marine sediment pore water, ice cores, or permafrost soil solution. The small volume requirement also supports higher spatial (e.g., in soils) or temporal sample resolution (e.g., in culture experiments). Chromatographic separation adds further chemical information to molecular formulas, enhancing our understanding of marine biogeochemistry, chemodiversity, and ecological processes.


Asunto(s)
Materia Orgánica Disuelta , Agua , Espectrometría de Masas/métodos , Agua/química , Agua Dulce/química , Cloruro de Sodio , Carbono
3.
Environ Sci Ecotechnol ; 21: 100392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38434492

RESUMEN

Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to µg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.

4.
Water Res ; 229: 119477, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528925

RESUMEN

Despite effluent organic matter (EfOM) being a major consumer of ozone during wastewater treatment, little is known about ozonation byproducts (OBPs) produced from EfOM. To unambiguously identify OBPs, heavy ozone was used to ozonate EfOM, resulting in 18O labeled and unlabeled OBPs. Labeled OBPs mostly represent a single 18O transfer and were classified as either direct or indirect OBPs based on the 18O/16O intensity ratios of the isotopologues. Of the 929 labeled OBPs, 84 were unequivocally classified as direct OBPs. The remainder suggest a major contribution by indirect, hydroxyl radical induced formation of OBPs in EfOM. Overall, labelled OBPs possess a low degree of unsaturation and contributed most to OBP peak intensity - marking them as potential end products. A few direct and indirect OBPs with high peak intensity containing 18O and heteroatoms (N, S) were fragmented with CID FT-ICR-MS/MS and screened for indicative neutral losses carrying heavy oxygen. The neutral loss screening was used to detect the 18O location on the OBP and indicate the original functional group in EfOM based on known reaction mechanisms. We identified sulfoxide and sulfonic acid functional groups in selected OBPs - implying the presence of reduced sulfur in EfOM molecules - while no evidence for nitrogen containing functional groups reacting with ozone was found.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Marcaje Isotópico , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Oxígeno , Purificación del Agua/métodos
5.
Cancers (Basel) ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077876

RESUMEN

Salivary gland carcinomas (SGC) are a heterogeneous group of tumors. The prognosis varies strongly according to its type, and even the distinction between benign and malign tumor is challenging. Adenoid cystic carcinoma (AdCy) is one subgroup of SGCs that is prone to late metastasis. This makes accurate tumor subtyping an important task. Matrix-assisted laser desorption/ionization (MALDI) imaging is a label-free technique capable of providing spatially resolved information about the abundance of biomolecules according to their mass-to-charge ratio. We analyzed tissue micro arrays (TMAs) of 25 patients (including six different SGC subtypes and a healthy control group of six patients) with high mass resolution MALDI imaging using a 12-Tesla magnetic resonance mass spectrometer. The high mass resolution allowed us to accurately detect single masses, with strong contributions to each class prediction. To address the added complexity created by the high mass resolution and multiple classes, we propose a deep-learning model. We showed that our deep-learning model provides a per-class classification accuracy of greater than 80% with little preprocessing. Based on this classification, we employed methods of explainable artificial intelligence (AI) to gain further insights into the spectrometric features of AdCys.

7.
Anal Chem ; 93(3): 1740-1748, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33370097

RESUMEN

Natural organic matter (NOM) is a highly complex mixture of natural organic molecules. The recent developments in NOM molecular characterization methods have shown that ESI-FT-ICR hyphenated with liquid chromatography (LC) is a promising approach to also obtain chemical information (such as polarity and molecular size) about NOM molecules. However, due to changing solvent composition during gradient elution in LC-FT-ICR-MS, ionization conditions also change throughout the chromatographic separation process. In this study, we applied a post-LC column counter gradient (CG) to ensure stable solvent conditions for transient ESI-MS signals. Suwanee River Fulvic Acid (SRFA) standard and a peat pore water were used as representative dissolved NOM samples for method development and validation. Our results show that in polar NOM fractions (which elute with <50% methanol) the TIC intensity and number of assigned molecular formulas were increased by 48% and 20%, as compared to the standard gradient (SG) method. Further application of a Q-isolation and selective ion accumulation for low abundance fractions revealed over 3 times more molecular formulas (especially for CHNO, CHOS, CHNOS formula classes) than in full scan mode. The number of detected highly polar NOM compounds (with elemental ratios H/C < 1, O/C > 0.6) were more than 20 times larger for CG-LC mode as compared to direct infusion (DI) (5715 vs 266 MF). We conclude that the application of a postcolumn counter gradient in LC-FT-ICR-MS analyses of NOM offers novel insight into the most polar fractions of NOM which are inaccessible in conventional DI measurements.

8.
J Am Soc Mass Spectrom ; 31(7): 1615-1618, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510217

RESUMEN

Natural organic matter (NOM) plays an important role in elemental cycles and ecology. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is an ultrahigh resolution technique used to molecularly resolve the complexity of NOM mixtures. However, even the very high mass resolution of FT-ICR-MS may result in multiple formula assignments to peaks in an NOM spectrum, especially at the high mass-to-charge ratio (m/z). The absorption mode is one option to process raw FT-ICR-MS data that can further increase the resolution of the peaks and has not been widely applied in NOM studies. In this study, we show the advantages of using the absorption mode for the analysis of NOM samples using a reference sample (Suwannee River fulvic acid). The absorption mode increased the precision of peak detection as well as the number (+23%) and accuracy of formula assignment (by 28%) when compared to the magnitude mode, besides achieving three times higher resolution. The results presented here highlight the potential to reduce the error threshold used during molecular formula assignment. In conclusion, the absorption mode shows advantages in the processing of NOM samples and other complex mixtures and should be promoted in the NOM community.

9.
Nat Commun ; 7: 12523, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27549742

RESUMEN

The cohesin subunits Smc1, Smc3 and Scc1 form large tripartite rings which mediate sister chromatid cohesion and chromatin structure. These are thought to entrap DNA with the help of the associated proteins SA1/2 and Pds5A/B. Structural information is available for parts of cohesin, but analyses of entire cohesin complexes are limited by their flexibility. Here we generated a more rigid 'bonsai' cohesin by truncating the coiled coils of Smc1 and Smc3 and used single-particle electron microscopy, chemical crosslinking-mass spectrometry and in silico modelling to generate three-dimensional models of cohesin bound to Pds5B. The HEAT-repeat protein Pds5B forms a curved structure around the nucleotide-binding domains of Smc1 and Smc3 and bridges the Smc3-Scc1 and SA1-Scc1 interfaces. These results indicate that Pds5B forms an integral part of the cohesin ring by contacting all other cohesin subunits, a property that may reflect the complex role of Pds5 proteins in controlling cohesin-DNA interactions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Ingeniería de Proteínas , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , Simulación por Computador , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Cohesinas
10.
J Biol Chem ; 290(5): 3069-80, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25433025

RESUMEN

The cyclic dimeric AMP nucleotide c-di-AMP is an essential second messenger in Bacillus subtilis. We have identified the protein DarA as one of the prominent c-di-AMP receptors in B. subtilis. Crystal structure analysis shows that DarA is highly homologous to PII signal transducer proteins. In contrast to PII proteins, the functionally important B- and T-loops are swapped with respect to their size. DarA is a homotrimer that binds three molecules of c-di-AMP, each in a pocket located between two subunits. We demonstrate that DarA is capable to bind c-di-AMP and with lower affinity cyclic GMP-AMP (3'3'-cGAMP) but not c-di-GMP or 2'3'-cGAMP. Consistently the crystal structure shows that within the ligand-binding pocket only one adenine is highly specifically recognized, whereas the pocket for the other adenine appears to be promiscuous. Comparison with a homologous ligand-free DarA structure reveals that c-di-AMP binding is accompanied by conformational changes of both the fold and the position of the B-loop in DarA.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Bacillus subtilis/metabolismo , Cristalografía por Rayos X , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...